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Abstract.  

The alternation of active and break phases in the Indian summer monsoon (ISM) rainfall at sub-seasonal timescales 

characterizes each ISM season. Tropical and mid-latitude drivers influence this sub-seasonal ISM variability. The circumglobal 

teleconnection observed in boreal summer drives sub-seasonal variability across the mid-latitudes and a two-way interaction 

between ISM and the circumglobal teleconnection pattern has been hypothesized. We use causal discovery algorithms to test 30 

the ISM-circumglobal teleconnection hypothesis in a causal framework. Our analysis shows a robust causal link from the 

circumglobal teleconnection pattern and the North Atlantic region to ISM rainfall. We estimate the normalized causal effect 

(CE) of this link to be about 0.2 (a one standard deviation shift in the circumglobal teleconnection causes a 0.2 standard 

deviation shift in the ISM rainfall one week later). In turn, the ISM rainfall influences back the circumglobal teleconnection 

pattern, however weakly. Moreover, we identify causal links that represent the internal dynamics of the ISM convective cell 35 

at weekly timescales: Periods with strong updraft lead to strong rainfall one week later, but the resulting increase in static 

stability suppresses convection again. In our analyses, this internal ISM dynamics has the strongest CE of 0.5. Tropical 

Madden-Julian Oscillation variability has a CE of 0.2-0.3. Our results show that the most of the ISM variability on weekly 

timescales is due to internal dynamics of convective cell, but both tropical and mid-latitude teleconnections have a substantial 

influence. Identifying these local and remote drivers paves the way for improved sub-seasonal forecasts.  40 

 

 

1 Introduction 

The Indian summer monsoon (ISM) is crucial for the Indian society, which receives 75% of its total annual rainfall during 

the summer months June through September (JJAS). The ISM rainfall variability at sub-seasonal time-scales is characterized 45 

by periods of enhanced and reduced rainfall activity over the monsoon-core region of central India. These periods are usually 

referred to as active (wet) and break (dry) phases respectively. Prolonged active and break spells in the ISM can lead to 

floods or droughts and consequently have severe socio-economic implications for the Indian subcontinent. A salient semi-

permanent feature of the ISM is the “monsoon trough” (MT) which manifests as a low pressure zone extending from north-

western India into the Gangetic plains and the Bay of Bengal (Rao, 1976; Krishnamurti and Sugi, 1987; Choudhury and 50 

Krishnan, 2011). The rainfall amount over the MT region is generally used to define dry and wet spells within the ISM 

season (Krishnan et al., 2000; Gadgil and Joseph, 2003). The position and strength of MT significantly influences the spatial 

distribution of monsoon precipitation and associated agricultural productivity on the Indian subcontinent, and the internal 

dynamics of the ISM circulation itself provides a first mechanism for sub-seasonal rainfall variability (Pathak et al., 2017).  

The land-sea temperature difference and the mid-tropospheric thermal forcing over the Tibetan Plateau are the prime drivers 55 

for the monsoon circulation (Yanai and Wu, 2006). Ascending motions over the Indian subcontinent enhance the northward 
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air flux from the ocean toward the land thereby bringing moisture from the ocean and fuelling rainfall. The latent heat 

released by strong convective rainfall is important for sustaining the ISM circulation (Levermann et al., 2009). However, it 

has two opposing effects: on the one hand, the latent heat release in the early stage of an active phase enhances ascending 

motions by heating the mid-to-lower troposphere (Levermann et al., 2009). On the other hand, latent heat release, that 60 

propagates upward and heats the upper layers of the air column, tends to increase the static stability and inhibits further 

ascending motions (Saha et al., 2012). Also, rainy weather and cloudy skies can have a cooling effect on the surface in 

support of suppressing convection (Krishnamurti and Bhalme, 1976). While this thermodynamic perspective is useful to 

understand the quasi-biweekly variations of the ISM elements locally, the spatio-temporal variations in the evolution of 

active and break phases over the Indian monsoon region are known to involve interactions between the wind anomalies and 65 

the northward propagation of the major rain band anomalies of the monsoon intraseasonal oscillation (Chattopadhyay et al., 

2009; Shige et al., 2017; Wang et al., 2006). Krishnan et al. (2000) hypothesized that the triggering of Rossby waves by 

suppressed convection over the Bay of Bengal  initiates ISM breaks through northwest propagation of high pressure 

anomalies from the central Bay of Bengal into northwest India. They noted that the initiation of suppressed convection and 

anticyclonic anomalies over the equatorial Indian Ocean and central Bay of Bengal occurred a week prior to the 70 

commencement of a monsoon break over India followed by the traversing of suppressed anomalies from the central Bay of 

Bengal to northwest India in about 2-3 days.  

At sub-seasonal timescales, both tropical and mid-latitude drivers have been proposed to influence the active and break phases 

of the ISM rainfall. For example, the Madden-Julian Oscillation (MJO) which governs the sub-seasonal tropical climate 

variability operating at 30-90 day timescale represents an important tropical driver of the ISM sub-seasonal variability (Zhang, 75 

2005). MJO consists of a transient region of strong convective motions and enhanced precipitation, which propagates eastward 

from the tropical Indian Ocean to the tropical western Pacific. Normally, only one MJO convective cell is present in these 

regions. The MJO influences the ISM system with enhanced convective rainfall activity during active MJO phases and negative 

rainfall anomalies during suppressed MJO phases (Anandh et al., 2018; Mishra et al., 2017; Pai et al., 2011).  

Next to tropical drivers, mid-latitude circulation, the North Atlantic variability and mid-latitude wave trains have been 80 

proposed to modulate the occurrence of active and break phases of ISM (Ding and Wang, 2005, 2007; Kripalani et al., 

1997). A circumglobal teleconnection pattern, characterized by a wave number 5 that encircles the northern hemisphere, has 

been associated with anomalous monthly rainfall and surface air temperature across the entire mid-latitude range (Ding and 

Wang, 2005). On the one hand, wave trains originating from the North Atlantic may influence the sub-seasonal variability of 

the ISM and modulate the intensity of the ISM rainfall (Ding and Wang, 2007; Krishnan et al., 2009). On the other hand, the 85 

diabatic heat sources in association with ISM convection might reinforce the circumglobal wave train propagating 

downstream (Ding and Wang, 2005). Another recurrent coupled pattern of sub-seasonal variability between mid-latitude 

circulation and the ISM is the wave train originating from the north-eastern North Atlantic and propagating with an arch-

shape trajectory through the western Siberian Plains into central Asia (Ding and Wang, 2007). An important feature of this 
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wave train is the 200 hPa central Asian High which may be able to trigger positive rainfall anomalies over the ISM region. 90 

This wave train generated in the North Atlantic region might also aid in modulating the alternating active and break 

conditions over central India (Ding and Wang, 2007; Krishnan et al., 2009; Saeed et al., 2011). 

Plain correlation and composite analysis are commonly used to assess the relationship between two or more climate variables 

(Ding and Wang, 2005; Lau and Kim, 2011; Vellore et al., 2014). However, correlation alone cannot distinguish whether the 

detected relationships represent actual causal connections or are only spurious links, due to autocorrelation, indirect links or 95 

common drivers. Recently, causal discovery algorithms have been developed and subsequently applied to gain insights into 

the physical links of the climate system (Kretschmer et al., 2016; Runge et al., 2015a; Schleussner et al., 2014). One can use 

such tools to test whether hypothesized links or teleconnections are likely to represent true physical pathways or rather artefacts 

due to spurious correlations. A careful analysis in the context of the ISM thus starts from physical theory and, hence, requires 

domain knowledge of ISM dynamics. Using this so-called “theory-guided causal discovery analysis”, we here study the two-100 

way causal links connecting both tropical and mid-latitude regions with the ISM. First, we assess whether the connection 

between the ISM and the mid-latitude wave trains can be considered causal in one or both directions. Next, we quantify the 

relative causal effect of tropical, extra-tropical and internal drivers on the ISM.  

2 Data and Methods 

2.1 Data  105 

We define the monsoon trough (MT) region as the region between 18°-25°N and 75°-88°E. We analyse weekly rainfall sums 

over the MT region from the CPC-NCEP (0.25°x0.25°) observational gridded global rainfall dataset over the period 1979-

2016 (Chen et al., 2008) and from the Pai et al. (0.25°x0.25°) observational gridded Indian rainfall dataset over the period 

1979-2017 (Pai et al., 2015). In the remainder of this paper, we will mainly focus on the results obtained for the latter data set, 

while those for the former are provided as parts of the Supplementary Material. Using data taken from the ERA Interim 110 

reanalysis (Dee et al., 2011) for the period 1979-2017, precursor regions are calculated from weekly averaged gridded 

(1.5°x1.5°) fields including outgoing longwave radiation at the top of the atmosphere (OLR), vertical velocity at 500 hPa (W) 

and geopotential height at 200 hPa (Z200). The NAO weekly index is obtained by averaging daily data from NOAA (available 

at ftp://ftp.cpc.ncep.noaa.gov/cwlinks/norm.daily.nao.index.b500101.current.ascii). To identify MJO phases, we use the OLR 

MJO Index (OMI) provided by NOAA (https://www.esrl.noaa.gov/psd/mjo/mjoindex/). This metric features the first and 115 

second principal components obtained by the empirical orthogonal function (EOF) analysis of OLR in the tropical belt 

(between 30°N and 30°S) filtered to remove influences outside the MJO time scale (30-90 days). OMI PC2 corresponds to the 

first principal component of the Real-Time Multivariate MJO index (RMM1), which is widely used in the literature (Kiladis 

et al., 2014; Pai et al., 2011; Wheeler and Hendon, 2004). All time series of MT rainfall, Z200 and all datasets analysed in this 

work are detrended and anomalies are calculated at weekly time-steps. Thus, both the climatological and seasonal cycle are 120 
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removed. Since the interannual variability may affect the analysis, we follow the approach proposed by Ding and Wang (2007) 

and filter the data by removing from each JJAS season its seasonal average. 

2.2 Causal effect networks 

We apply Causal Effect Networks (CEN) and the Response-Guided Causal Precursors Detection (RG-CPD) tool, two recently 

developed applications of the so-called Peter and Clark – Momentary Conditional Independence (PC-MCI)algorithm (Runge 125 

et al., 2014; Spirtes et al., 2000). A CEN detects and visualizes the causal relationships among a set of univariate time series 

of variables (Kretschmer et al., 2016). The network is constructed using the PC-MCI algorithm, which is a causal discovery 

algorithm able to distinguish between spurious and true causal links for different time lags of interest (Runge, 2018). The term 

“causal” rests on several assumptions (Spirtes et al., 2000; Runge, 2018):It should be understood as causal relative to the set 

of analysed precursors, meaning that the identified causal links are valid in the selected set of actors. Adding additional actors 130 

may change the structure of the causal network. It is therefore crucial to combine CEN with theoretical domain knowledge 

(i.e. our “theory-guided causal discovery analysis” approach). Other important assumption are stationarity of time series and 

near-linear interactions between actors. 

The PC-MCI algorithm is a two-step algorithm based on a modified version of the PC algorithm (Runge et al., 2014; Spirtes 

et al., 2000). In the first step, the PC-step, identifies the relevant conditions for each variable by iterative independence testing. 135 

The following MCI-step tests whether the link between two actors can be considered causal. The false discovery rate (FDR) 

approach, as described by Benjamini and Hochberg, is applied to correct for inflated p-values due to multiple significance 

testing (Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001). Each step is further described below.  

In a variable set P containing n univariate detrended anomaly time series (actors), the PC-step identifies the causal parents of 

each element in P, among all the remaining elements in P. First, the PC algorithm calculates plain correlations between each 140 

ith actor in P and all the remaining elements at a certain time lag τ. Those actors that significantly correlate with the ith actor 

form the set of its initial parents Pi
0 at lag τ. Then, partial correlations between the ith actor and each element in Pi

0 are 

calculated, conditioning first on one condition. If x, y and z are elements in P, the partial correlation between x and y conditioned 

on z is calculated by first performing linear regressions of x on z and of y on z and then calculating the correlation between the 

residuals. If the resulting partial correlation between x and y is still significant at a certain significance threshold α, x and y are 145 

said to be conditionally dependent given variable z, i.e., the correlation between x and y cannot be (exclusively) explained by 

the influence of variable z. When the opposite happens, the link is spurious and therefore filtered out, and x and y are called 

conditionally independent. This process leads to a reduced set of parents Pi
1. In the next step, the process is repeated but 

conditioning on two conditions, leading to a second set of parents Pi
2. The algorithm converges when the number of causal 

parents contained in Pi
n is equal or greater than the number of conditions needed to calculate the next partial correlation. At 150 

the end of the PC-step, each element in P has its own set of parents, which then enters the MCI-step. In the MCI-step, the 

partial correlation between an actor and its set of parents is calculated again but conditioned simultaneously on both the set of 
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parents of the ith actor and the sets of parents of each of the parents of the ith actor. Those parents that pass the MCI test will 

then form the final set of parents for the ith actor (Runge et al., 2017). A numerical example of these steps is given in the SI.  

The causal links detected via the PC-MCI algorithm are visualized in terms of a causal effect network (CEN). Each CEN is 155 

composed by circles, representing the various actors, and by arrows, with the colour indicating the strength and the arrow the 

direction of the detected causal links. The strength is expressed by its associated path coefficient, defined as following Runge 

et al (2015a), as the “expected change in Xj (in units of its standard deviation [s.d] and relative to the unperturbed regime) at 

time t if Xi was perturbed at time t–τ by a one s.d. delta peak”. To give an example, a path coefficient of 0.5 means that a 

change in the causal parent of 1 s.d. corresponds to a change in 0.5 s.d. in the response variable. Here, due to the fact that only 160 

lags at τ=1 are accounted for, the path coefficients also correspond to the total causal effect (CE). The path coefficient of each 

variable on itself is here referred to as the autocorrelation path coefficient. This should not be confused with the usual definition 

of the lag-1 autocorrelation coefficient. The autocorrelation path coefficient is the same as the path coefficient, where i  = j 

and it represents the causal influence of an actor on itself.  

 165 

2.3 Response-guided causal precursor detection 

RG-CPD identifies the causal precursors of a response variable based on multivariate gridded observational data (Kretschmer 

et al., 2017). It combines a response-guided detection step (Bello et al., 2015) with the PC-MCI causal discovery step (Runge 

et al., 2014;  2015a; 2015b; Spirtes et al., 2000). Without requiring an a priori definition of the possible precursors, RG-CPD 

searches for correlated precursor regions of a variable of interest (i.e. the response variable) in multivariate gridded data and 170 

then detects causal precursors by filtering out spurious links due to common drivers, autocorrelation effects or indirect links. 

Using correlation maps, an initial set of precursors is identified in relevant meteorological fields by finding regions in which 

the recorded variability precedes changes in the response variable at some lead time. Adjacent grid points with a significant 

correlation of the same sign at a level of α=0.05 are spatially averaged to create single one-dimensional time series, called 

precursor region (Willink et al., 2017). Correlation values are calculated with a two-sided p-value for a hypothesis test whose 175 

null hypothesis is that there is no correlation, using the Wald Test with a t-distribution of the test statistic. All p-values are 

corrected using the Benjamini and Hochberg FDR correction to address the variance inflation due to serial correlations 

(Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001).  In the second step, PC-MCI identifies the set of causal 

precursors for the response variable. The results present those precursor regions on a global map that are identified to be 

causally linked with the response variable (MT rainfall).  180 
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3 Results 

3.1 Causal testing of the two-way ISM-circumglobal teleconnection mechanism 

First, we assess whether the two-way interaction between the circumglobal wave train (that characterizes the boreal summer 

circulation) and the MT rainfall, as hypothesized by Ding & Wang (2005, hereafter DW2005), is reproduced using our CEN 

analysis. We will refer to this theory as the monsoon-circumglobal teleconnection mechanism.  We also analyse the influence 185 

of the North Atlantic on the MT rainfall, as hypothesized by Ding & Wang (2007, hereafter DW2007). 

 
Figure 1. Rainfall climatology over India. Panel (a): JJAS rainfall climatology over the 1979-2017 period from the Pai et al. dataset. The 

black box identifies the MT region. Panel (b): standard deviation (s.d.) of weekly JJAS rainfall over the 1979-2017 period from the Pai et 

al. dataset. Panel (c): time series of weekly MT JJAS rainfall over the period 1979-2017; each year contains 18 weeks, with the first week 190 
starting on the 27th of May. 
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Figures 1a,b show the JJAS climatology and the s.d. of weekly ISM rainfall from the Pai et al. dataset for the period 1979-

2017. We average the rainfall over the MT region and identify a univariate time series, which represents the weekly variation 195 

of the ISM during JJAS over the MT region (Fig. 1c).  This time series contains 18 weeks for each of the 39 analysed years, 

each year starting on the 27th of May. The analysis of the MT rainfall starts on the 3rd week (10th of June) for a total of 16 7-

day time slots per year. The first two time slots allow detecting lagged relationships, and the PC-MCI algorithm requires to 

add twice the maximum time lag explored (here a maximum lag of 1 week is chosen). Thus, information from the previous 

year does not interfere with the following year. The weekly time scale is considered to represent the relevant interaction 200 

between ISM rainfall and Northern Hemisphere atmospheric circulation at a sub-seasonal timescale (Ding and Wang, 2007; 

Krishnamurti and Bhalme, 1976; Vellore et al., 2014).  
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Figure 2. Mid-latitude variability associated with the ISM. Panels (a) and (b): EOF1 and EOF2 for the JJAS weekly Z200 field in the 

northern mid-latitudes for the period 1979-2017. Panel (c): correlation between weekly MT rainfall and Z200 (lag = -1 week). Panel (d): the 205 
CGTI region (white box) and the correlation between CGTI and Z200 (lag = 0), which forms the circumglobal teleconnection pattern. In 

panels (c) and (d), correlation coefficients and anomalies with a p-value of p < 0.05 (accounting for the effect of serial correlations) are 
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shown by black contours. Panel (e): mean temperature anomalies over the Northern Hemisphere during weeks with CGTI > 1 CGTIstd minus 

weeks with CGTI < -1 CGTIstd. Panel (f): as panel (e) but for rainfall anomalies from the CPC-NCEP dataset (as rainfall data for the Pai 

dataset are available over India only) for the period 1979-2017. In panels (e) and (f), anomalies with a p-value of p < 0.05 (accounting for 210 
the effect of serial correlations) are shown by black contours, while grid points which are found significant only with non-corrected p-values 

are shaded. 

To analyse the major mode of Z200 variability in the Northern Hemisphere mid-latitudes, following DW2005, we calculate 

the first and second empirical orthogonal functions (EOFs) of weekly averaged Z200 fields over the Northern Hemisphere (0°-

90°N) for the summer months coinciding with the ISM season (June to September, weeks 21 to 38). Figures 2a,b show the 215 

first and second EOFs. EOF1 represents the dominant component of sub-seasonal variability of the Z200 field, and 

qualitatively resembles the s.d. of Z200 (see Fig. S1 in the SI). EOF2 represents the second dominant pattern of sub-seasonal 

variability of the Z200 field. However, EOF1 and EOF2 explain respectively only 6.4% and 5.9% of the sub-seasonal 

variability, i.e. after removing mean annual cycle and interannual variability. The first 5 EOFs explain together 27.9% of the 

total variability. These low values are not surprising if we consider that the mean annual cycle and interannual variability have 220 

been removed, thus leaving only the disturbances from the year-specific mean state. We apply a test for pronounced separation 

of EOFs following North et al, (1982). This test is based on the eigenvalues of the EOF analysis and provides a rule of thumb 

to determine whether two EOFs are degenerate, i.e. “indistinguishable between their uncertainties” (for further details see 

North et al. 1982 and Hannachi et al. 2007). The North test shows that the first three EOFs are not well separated mutually, 

while EOF1 and EOF2 are well separated from EOF4 and EOF5 (see SI, Fig. S2). Similarly, DW2007 also found a twin EOF 225 

mode in their study, however their work focuses on the Eurasian sector only.  

DW2005 define the ISM-circumglobal teleconnection mechanism at interannual and monthly time scale, DW2007 uses daily 

data (after removing the interannual variability) to analyse the influence of the Eurasian wave train initiated from the North 

Atlantic on the north-central Indian rainfall. Thus, first we need to show that the definition of the circumglobal-teleconnection 

pattern as in DW2005, also applies meaningfully at weekly timescales, with the interannual variability is filtered out. Figure 230 

2c shows the spatial correlation structure of MT rainfall with the variability of Z200 in the Northern Hemisphere at weekly 

timescale with Z200 leading the MT rainfall by one week (lag = -1). Following DW2005, we define a circumglobal 

teleconnection index (CGTI) as the weekly-mean Z200 spatially averaged over the region 35°-40°N, 60°-70°E (white box in 

Fig. 2d). The contemporaneous (lag=0) spatial correlation structure between the CGTI and Z200, i.e. the circumglobal 

teleconnection pattern, is shown in Fig. 2d. A large region of strong positive correlation surrounds the Caspian Sea, while 235 

downstream, i.e. moving from west to east following the mid-latitude westerlies, a circumglobal wave train is shown with 4 

positive centres of action positioned over east Asia, the North Pacific, North America and western Europe. Despite different 

temporal averaging, using different datasets and the fact that we remove the interannual variability, our results with 5 centres 

of positive correlation strongly resemble the circumglobal teleconnection pattern described by DW2005, in terms of sign and 

the geographical position of its centres of action. Thus, we conclude that the circumgobal teleconnection patter defined by the 240 

CGTI region manifests also at weekly time scale. Moreover, the wave pattern shown over Eurasia in Fig. 2c and 2d also 
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resembles the wave pattern identified by DW2007. Thus, this resemblance represents the first hint that the circumglobal 

teleconnection pattern and the Eurasian wave train analysed by DW2007 share common elements, and llink the North Atlantic 

variavility to the ISM region. In both Fig. 2c and 2d correlation values with corrected p-values p < 0.05 are highlighted with 

black contours.  245 

The circumglobal teleconnection pattern (Fig. 2d) shows a close to zero and non-significant spatial correlation with the EOF1 

pattern. The spatial correlation of EOF2 (Fig. 2b) with the circumglobal teleconnection pattern (Fig. 2d) at a global scale is r 

= 0.32 ± 0.01, and the spatial correlation with the circumglobal teleconnection pattern increases when limited to the Eurasian 

sector only (r = 0.46 ± 0.02). Contrarily, the spatial correlation with EOF1 and the circumglobal teleconnection is also low 

when only the Eurasian sector is taken into account (r = 0.05 ± 0.03). When EOFs are calculated only on the Eurasian sector 250 

(0°-90°N – 0°-150°E), the order of the first and second EOFs is reversed, but the spatial patterns are very similar: EOF1Eurasia 

is strongly spatially correlated with EOF2 (r = 0.93 ± 0.01) and with the circumglobal teleconnection pattern (r = 0.44 ± 0.02; 

see SI, Fig. S3). Thus, the choice of the region to calculate the EOFs does not strongly affect the results. Moreover, since we 

are interested in the two-way effects of the entire mid-latitude circulation and the MT rainfall, we decided to use the EOFs 

defined over the entire Northern Hemisphere (as shown in Figs. 2a,b).  255 

The time series for the principal component of EOF2 also significantly correlates with the CGTI time series (r = 0.26 ± 0.07) 

while the correlation for the first principal component is low and not significant (r = -0.01 ± 0.08). The circumglobal 

teleconnection pattern also strongly resembles the correlation structure between MT rainfall and Z200 at lag -1 (Fig. 2c) with 

a spatial correlation of 0.69 ± 0.01. These findings are consistent with those of DW2005, and thus illustrate a likely interaction 

between MT rainfall and Z200 variability.  260 

Temperature and precipitation anonalies during weeks with strong CGTI also exhibit a clear wave train pattern originating 

from Western Europe. We calculate 2m-temperature and precipitation anomalies of the composite of weeks with CGTI > 1 

CGTIstd minus composites of weeks with CGTI < -1 CGTIstd (where CGTIstd is the s.d. of the CGTI index). Figures 2e,f present 

the corresponding 2m-temperature and precipitation anomalies from the Pai et al. dataset, respectively, showing anomalies 

with p-values p < 0.05 shaded and highlighting anomalies that have corrected p-values p < 0.05 by black contours. In both 265 

variables, a wave train from Western Europe to India via European Russia is detected. Wet and cold anomalies appear over 

central India and European Russia, while warm and dry anomalies are found over Western Europe and east of the Caspian Sea. 

Warm and dry anomalies appear together, however precipitation anomalies show a slight eastward shift with respect to 

temperature anomalies. Precipitation anomalies are weaker than those found for 2m-temperature, however a clearly defined 

wave pattern appears over the Eurasian sector.  270 
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Figure 3. Causal mid-latitude interactions with the ISM. Panel (a): Causal Effect Network (CEN) built with CGTI, the PC of EOF2 and 

MT rainfall for the period 1979-2017. Panel (b): Same as panel (a) but with the addition of the PC of EOF1 and NAO. The strength of the 

causal links expressed by the standardized regression path coefficients and autocorrelation path coefficients are shown. All links have a lag 

of 1 week. See the main text for discussion.  275 
 

Based on  the DW2005 hypothesis, we build a CEN with CGTI, MT rainfall and the principal component of EOF2 (Fig. 3a). 

This CEN depicts a positive two-way connection both between CGTI and MT rainfall and between CGTI and EOF2. This 

implies that anomalously high CGTI values (with relatively high Z200 east of the Caspian Sea) enhance MT rainfall at a 1-

week lag, while lower CGTI values have the opposite effect. The link directed from MT rainfall to CGTI illustrates a reverse 280 

influence, creating a positive feedback between CGTI and MT rainfall, consistent with DW2005. The strength of the causal 

link between the CGTI and MT rainfall is expressed by the path coefficients (see Methods section).  

The causal link strength of the CGTI acting on the MT rainfall is βCGTI→MT ~0.2 (meaning that a change of 1 s.d. in CGTI leads 

to a change in 0.2 s.d in MT rainfall, while the reverse link is weaker (βMT→CGTI~0.1) but still significant. EOF2 shows a two-

way link with the CGTI. The links between EOF2 and CGTI support the DW2005 hypothesis that wave trains in the mid-285 

latitudes (represented by EOF2) affect the MT rainfall via the CGTI.  
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To assess whether the North Atlantic variability affects the MT rainfall (as hypothesized by DW2007), we add the NAO index 

to our original CEN. In order to check whether the first mode of variability in the Northern Hemisphere may also play a role 

in shaping MT rainfall variability, we additionally include EOF1. Figure 3b shows the resulting CEN: the causal links identified 

in the previous CEN (Fig. 3a) remain unaltered, and two additional positive links from NAO to CGTI and from the EOF2 to 290 

the NAO emerge. A positive NAO phase will strengthen the CGTI at 1-week lag (βNAO→CGTI~0.2) with a reverse influence 

from EOF2 on NAO (βEOF2→NAO~0.1), though weaker. EOF1 does not show a causal connection with CGTI or with any other 

actor. This CEN unveils both an influence of the mid-latitude atmospheric dynamics (EOF2) and North Atlantic variability 

(NAO) on MT rainfall and back, with the CGTI acting as a gateway, thus supporting both the DW2005 and DW2007 

hypotheses. Substituting EOF2 with its corresponding EOF calculated over the Eurasian sector, EOF1Eurasia, shows consistent 295 

results (see SI, Fig. S4). 

3.2 Regional extratropical features affecting the Indian summer monsoon  

The EOF-based CEN analysis depicts the total hemispheric response of Z200 without differentiating among the influences of 

different geographical regions. To detect influential regions, we next apply RG-CPD to search for causal precursors of both 

the CGTI and MT rainfall at 1-week lead time in weekly OLR and Z200 fields. In the tropical belt, OLR is often used as a 300 

proxy of rainfall and convective activity due to its relation with the temperature at the top of the clouds. Deep convection is 

characterized by high altitude cloud tops and low emission temperatures (and thus low OLR values), while at clear sky 

conditions, the emission temperature of the land surface is higher and leads to larger OLR values (Krishnan et al., 2000). 

Figure 4 summarizes our corresponding findings. The right column (Fig. 4) shows the MT region and represents lag 0. Moving 

towards the left, the second column shows the correlation maps (top) and causal precursors (bottom) of the MT rainfall 305 

identified at 1-week lead time in Z200 (Fig. 4c). Causal precursors describe an arch-shaped wave train from Western Europe 

to India. The wave train features one low-pressure region (L1 over European Russia) and two high-pressure regions (the CGTI 

and H1 over Western Europe). The leftmost column in Fig. 4 shows the correlation maps (top) and causal precursors (bottom) 

of the CGTI identified in the Z200 (Fig. 4a) and OLR (Fig. 4b) fields at 1-week lead time with respect to the CGTI (2-week 

lead time with respect to the MT rainfall). Again, both Z200 and OLR correlation maps show an arch-shaped wave pattern 310 

emanating from the North Atlantic and propagating towards the Caspian Sea via European Russia. The associated Z200 causal 

precursors for the CGTI clearly depict this mid-latitude wave train both in Z200 and OLR (Figs. 4a,b). In the Z200 field (Fig. 

4a), the wave train features two lows (L1 over European Russia and L2 over the eastern North Atlantic) and two highs (the 

CGTI and H1 over Western Europe). OLR causal precursors (Fig. 4b) depict only the L1 and H1 components of the wave, as 

the correlation over L2 is not significant. Moreover, the prominent influence of the tropical belt on the CGTI is also detected 315 

(OLR1, Fig. 4b). This result further supports the hypothesis that a wave train coming from the mid-latitudes influences the 

ISM circulation system via the CGTI region as already shown in Fig. 2, while strong temperature and precipitation anomalies 

shown in Figs. 2e,f coincide markedly with the regions H1, L1 and CGTI identified in Figs. 4a,c.  figure 4a shows a North 
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Atlantic pattern that resembles a negative NAO, whereas Fig. 3b indicated a positive causal link from NAO on CGTI. This 

seaming mismatch is explained by the difference in pressure level and lead-time with a more positive NAO pattern at lag -2 320 

(see SI, Fig. S5). 

 
Figure 4. Mid-latitude causal precursors of ISM. Panel (a): correlation of CGTI with Z200 at 1-week lead time (top), and the causal 

precursors of CGTI identified via RG-CPD (bottom) for the period 1979-2017. Panel (b): as for panel (a) but for OLR fields. Panel (c): 

correlation map for weekly MT rainfall and Z200 field at 1-week lead time (top) and the causal precursors identified via RG-CPD (bottom). 325 
Panel (d): ISM rainfall over the MT region from the Pai et al. dataset (reproduced from Fig. 1a). 

 

The CEN built with MT rainfall, CGTI and the upstream part of the mid-latitude wave train, i.e. L1 and H1, is shown in Fig. 

5. The causal links between the CGTI and the MT rainfall remain unaltered (see Fig. 3), with the CGTI mediating the 

connection between the mid-latitude wave (represented by H1 and L1) and the MT rainfall. Further, the obtained CEN can be 330 

interpreted as a wave train that propagates eastward from the east Atlantic towards the Indian monsoon region, as postulated 

by DW2007. Let us focus on the connections between H1 and L1. If H1 increases, then L1 decreases at 1-week lag. The 
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backward link is positive: thus, if L1 increases H1 also increases at 1-week lag. This dampening loop is easiest explained by 

an eastward propagating wave. To illustrate this, we design a simple experiment using synthetic time series representing a 

simple cosine-wave propagating eastward with added noise sampled at two locations. We estimate the wavelength, wave speed 335 

and amplitude based on the observed properties of H1 and L1 (see SI, Fig. S7). The CEN resulting from these time series is 

equivalent to that of H1 and L1 in Fig. 5. With a negative forward link and a positive backward link. Physically, this can be 

understood in that a traveling wave amplifies in the forward direction, but at the same time dampens in the backward direction.  

 
Figure 5. Mid-latitude wave train. CEN built with the MT rainfall, CGTI, L1 and H1 (as identified in Fig. 4a) for the period 1979-2017. 340 
The strength of causal links expressed by the standardized regression path coefficients and autocorrelation path coefficients are shown. All 

links have a lag of 1 week. See the main text for discussion.  
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3.3 Internal feedbacks in the monsoon circulation  

Next, we perform a similar analysis using fields of vertical wind velocities (W) and OLR to capture the internal feedbacks and 345 

dynamics of the ISM convective updraft. Their correlation maps and detected causal precursors are shown in Figs. 6a,b. MT 

rainfall has four causal precursors in OLR. A large region located over India and the Maritime Continent (OLR1, Fig. 6a) 

shows a negative causal link, while another region covering parts of the Himalayan plateau and extending toward the Arabian 

Peninsula shows a positive causal link (OLR2, Fig. 6a). A third region is found north of the Caspian Sea, over western Russia 

(OLR3) with a negative causal relationship with MT rainfall. Finally, a last region located over north/central Europe showing 350 

a negative causal relationship with MT rainfall is found (OLR4, Fig. 6a). OLR1 spatially overlaps with W1, the largest causal 

precursor in the vertical wind field, representing the summer branch of the ITCZ over the northern Indian Ocean and western 

Pacific Ocean (Fig. 6b, top panel). The positive correlation of W1 and negative correlation of OLR1 with MT rainfall indicate 

that ascending motions and associated high-level cloud formation (reducing OLR) are followed by enhanced rainfall over the 

MT region with a lag of 1 week. OLR2, OLR3 and OLR4 largely overlap with the regions H1 and L1 as well as the CGTI 355 

region identified in Fig. 4c, further supporting the importance of this mid-latitude wave pattern in modulating the rainfall over 

the MT region. 
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Figure 6. Tropical causal interactions of ISM. Panel (a) shows the correlation map of weekly MT rainfall with the global OLR field at 1-

week lead time (top panel) and the causal precursors identified via RG-CPD (bottom panel) for the period 1979-2017. Panels (b): as for 360 
panel (a) but for the W field. Panels (c) and (d) show the CENs build with W1, OLR1 and MT rainfall and MT rainfall, W1, CGTI and 
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MJO2, respectively. The strength of causal links expressed by the standardized regression path coefficients and autocorrelation path 

coefficients are shown. All links have a lag of 1 week. See the main text for discussion.  

 

 365 

Figures 6c,d show two CENs constructed from the MT rainfall causal precursors in OLR and W (region OLR1 as defined in 

Fig. 6a and W1 as defined in Fig. 6b), and including CGTI and MT rainfall itself. Since the OLR and W fields are more noisy 

than Z200, we use only the two dominant causal precursors. Although the regions OLR1 and W1 show a large spatial overlap, 

they represent two different components of the ISM system. OLR is calculated at the top of the atmosphere and low OLR 

values represent high clouds that reach the top of the troposphere. Thus, OLR is a proxy for deep convection and clouds. W is 370 

calculated at 500 hPa and W1 thus represents the ascending branch of the ISM circulation cell and nearby ITCZ. The CEN 

built with OLR1, W1 and the MT rainfall at weekly timescale (Fig. 6c) represents the internal dynamics of the monsoon cell. 

Enhanced vertical motions (W1) precede an increase in the MT rainfall by one week, while stronger MT rainfall leads to 

weaker ascending motions one week later. Meanwhile, more clouds (lower OLR1) are associated with enhanced W1 one week 

later (thus enhancing the ISM circulation). Contrarily, enhanced rainfall shows a negative feedback on both OLR1 and W1: 375 

stronger MT rainfall leads to reduced vertical motions and clearer skies (lower W1 and higher OLR1, respectively). This CEN 

thus depicts a negative feedback intrinsic to the ISM internal variability: while enhanced ascending motions and thus 

strengthened ISM circulation lead to stronger MT rainfall, enhanced rainfall leads to weaker ISM circulation and in turn 

diminished MT rainfall. From a physical point of view, this can be explained via an increase of atmospheric static stability due 

to latent heat release in the higher layers of the troposphere. This mechanism is shown in Fig. S9 (see SI), where we build a 380 

CEN with MT rainfall, sea level pressure (SLP) over the Bay of Bengal (SLP_BOB), temperature at 400hPa (Tp4_MT) and 

temperature at 600 hPa (Tp6_MT). The resulting causal links show that while a decrease in SLP over the Bay of Bengal is 

followed by an increase in MT rainfall and both Tp4_MT and Tp6_MT, an increase in Tp4_MT leads to a decrease in MT 

rainfall. The described mechanism is in agreement with what was proposed by Saha et al. (2012) and Krishnamurti and Bhalme 

(1976). 385 

Next, we test the causal relationships identified between MT rainfall and W1 when adding the CGTI and MJO variability to 

the CEN (Fig. 6d). MJO variability is expressed by the OMI PC2 index (here referred to as MJO2), the second EOF of OLR 

in the tropical belt (Kiladis et al., 2014).  OMI PC2 corresponds to the RMM1 index, widely used in previous work on the 

relationship between the MJO and the ISM (Kiladis et al., 2014; Mishra et al., 2017; Pai et al., 2011). Positive RMM1 values 

correspond to MJO phases 3-6 (also referred to as the active phases of MJO) and physically represent the presence of strong 390 

convection activity propagating eastward from the Indian Ocean towards the western Pacific. Several studies show that MT 

rainfall is enhanced during the active MJO phase (Anandh et al., 2018; Mishra et al., 2017; Pai et al., 2011). In this CEN, the 

links between the MT rainfall and W1 remain unaltered, while the CGTI shows a positive feedback with W1: an increase in 

the CGTI causes stronger ascending motions, while stronger ascending motion over the Indian region strengthens the CGTI. 

The CGTI has a direct positive causal link to MT rainfall (Fig. 6d). Even though the direct link from MT rainfall to CGTI has 395 
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now disappeared (likely because this link was already relatively weak in a simpler CEN configuration, see Fig. 3a), the link 

between the ISM circulation and the mid-latitudes remains via W1. Stronger ISM circulation (higher W1) leads to increased 

CGTI and vice versa as seen in Fig. 3, where higher CGTI leads to enhanced MT rainfall and vice versa. MJO2 displays a 

positive causal link with W1, meaning that OMI PC2 positive values lead to enhanced vertical motions with 1-week lead time 

and, as a consequence, enhanced MT rainfall with 2-week lead time. However, stronger W1 leads to decreased MJO2 (negative 400 

causal link from W1 to MJO2). Thus, MJO2 shows exactly the same causal relationships (but opposite signs) with W1 as 

shown for OLR1 in Fig. 6c, likely because the OMI index is also defined based upon OLR fields in the tropical belt and the 

OLR pattern shown by the second EOF of the OMI index largely overlaps with our OLR1 region (Kiladis et al., 2014). 

3.4: Combining local, tropical and mid-latitude causal interactions 

Finally, we bring together the findings obtained with CEN and RG-CPD throughout this study and summarize them in a single 405 

CEN to provide an overall picture and test the consistency of the results. We include the most important identified regions 

from both the tropics and the mid-latitudes together in a single CEN (Fig. 7). Specifically, this CEN is built with elements that 

come from both, the DW2005 and DW2007 hypotheses (Fig. 3) and from our RG-CPD analysis (Figs. 4 and 6). Our results 

show that the influence of both, the mid-latitude circulation (EOF2) and the North Atlantic (NAO), on the MT rainfall is 

mediated via the CGTI and is robust: the structure and the direction of the causal links are retained. The backward influence 410 

of the MT rainfall on the mid-latitude circulation is weaker and more complex, as shown in Fig. 6d. CGTI has both a direct 

causal link to MT rainfall and an indirect one via W1. 
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Figure 7. Combined mid-latitude and tropical causal interactions of ISM. CEN built with W1, MJO2, MT rainfall, NAO, CGTI and 

EOF2 for the period 1979-2017. The strength of causal links expressed by the standardized regression path coefficients and autocorrelation 415 
path coefficients are shown. All links have a lag of 1 week. See the main text for discussion.  
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MT rainfall and W1 show a negative feedback, with increased W1 leading to enhanced MT rainfall but stronger MT rainfall 

leading to weaker W1. The MT rainfall is also influenced by MJO2 via W1 with a one-way connection. Suppressed or 420 

weakened ascending motions promote lower MJO2 one week after, thus promoting the switch toward MJO phases 7-8 and 1-

2, also known as suppressed MJO phases. Suppressed MJO phases are in turn linked with the onset of break phases of the 

Indian monsoon (Pai et al., 2011).  

To quantify the relative influence of tropical and mid-latitude teleconnections on MT rainfall, we report the causal effect (CE) 

strength of each link, which is given by the path coefficient in the CEN.W1 has the strongest causal effect on MT rainfall with 425 

βW1→MT = 0.52, implying that a one s.d. shift in W1 causes about a half s.d. change in MT rainfall after one week (under the 

previously mentioned conditions, see Methods section). The CGTI influences MT rainfall directly and indirectly via W1 and 

the total causal effect is given by 𝛽𝛽𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶→𝑀𝑀𝑀𝑀 +  𝛽𝛽𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶→𝑊𝑊1  ∙ 𝛽𝛽𝑊𝑊1→𝑀𝑀𝑀𝑀 =  0.24, where 𝛽𝛽𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶→𝑀𝑀𝑀𝑀 = 0.19 and 𝛽𝛽𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶→𝑊𝑊1 = 0.10 

The causal effect of CGTI is thus roughly half as strong as that of the internal variability of the Indian monsoon system as 

represented here by W1. MJO2 has a causal effect on W1 of βMJO2→W1 = 0.35 and is influenced by W1 with βW1→MJO2 = -0.39. 430 

Thus, taking both W1 and MT as representatives of internal ISM dynamics, the effects of external drivers from both tropics 

and mid-latitudes on this internal dynamics are both of the order of half as strong as that of W1 on MT. Looking more 

specifically at the causal effect of MJO2 on MT rainfall mediated via W1, we find βMJO2→W1*βW1→MT = 0.18, i.e., the tropical 

driver effect on MT rainfall itself is similar in magnitude as that of CGTI as the key extratropical driver. The path coefficients 

for all the identified causal links are reported in Table S1 (see SI).  435 

Moreover, we calculate the average causal effect (ACE) and average causal susceptibility (ACS) for each actor. While ACE 

gives a measure of the causal effect that each actor has on the rest of the network, ACS measures the sensitivity of each actor 

to perturbations entering in any other part of the network (Runge et al., 2015a). In this CEN, W1 has the highest ACE (~0.21) 

and both CGTI and MJO2 the second highest ACE (~0.07). MT rainfall and W1 show the strongest ACS (~0.1). ACE and 

ACS values for each actor are further summarized in Table S2, see SI. These values again stress the importance of both, ISM 440 

internal variability and CGTI, in mediating mid-latitude waves towards the ISM. 

We performed the same analysis using the CPC-NCEP rainfall dataset over the period 1979-2016 (see SI, Figs. S10-S16) and 

find that our results are robust when using this different rainfall dataset. All causal links are reproduced with the same directions 

and only the magnitudes of the causal effects show minor changes. 

4. Discussion and conclusions 445 

In this study, we apply causal discovery algorithms to analyse the influence of global middle and upper tropospheric fields on 

the ISM rainfall and study the two-way causal links between the mid-latitude circulation and ISM rainfall. We perform a 

validation of both the monsoon-circumglobal teleconnection hypothesis proposed by DW2005 and the North Atlantic-

monsoon connection proposed by DW2007 using causal discovery tools. We use RG-CPD to detect causal precursors from 
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both mid-latitude and tropical regions and then apply CEN to assess the influence of different drivers of MT rainfall and their 450 

relative contribution to the MT rainfall sub-seasonal variability.  

The new findings of this work can be summarized in two main aspects: first, we prove the DW2005 hypothesis from a causal 

point of view, showing that the hypothesized two-way link between the MT rainfall and the mid-latitude circulation is  detected 

in a causal framework. Second, we quantify the relative importance of a) the mid-latitude circulation, b) the internal dynamics 

of the convection cell and c) the Madden-Julian Oscillation (MJO) on the ISM subseasonal variability (see Figure 7 and Table 455 

S1 in the SI). Moreover, we also show that the circumglobal teleconnection hypothesis by DW2005, initially defined at 

seasonal/monthly time scale, holds also at sub-seasonal (weekly) time scale and it can be unified with the hypothesis by 

DW2007, which analysed wave trains propagating from the North Atlantic toward the MT region at 2-week time scale. Thus, 

we argue that the CGTI region and the mid-latitude circulation are important for both the sub-seasonal and interannual 

variability of the MT rainfall. 460 

Our causal analyses confirm the influence of the mid-latitude circulation on MT rainfall via the CGTI, as hypothesized by 

DW2005. We also confirm that MT rainfall forces the mid-latitude circulation via the CGTI but this link is weaker. Moreover, 

we use a causal precursor identification tool and find a wave train that emanates from the eastern Atlantic stretching towards 

India. This wave pattern is visible in geopotential height fields, temperature and precipitation anomalies, and acts on MT 

rainfall via the CGTI with a 1-2 week lead time, in agreement with the DW2007 hypothesis. 465 

Our results show that RG-CPD can detect the well-known circulation features of the MT rainfall with 1-week lead time, 

without using any a priori theoretical or geographical constraint to select the causal precursors among all precursor regions 

demonstrating the efficacy of the presented method. Moreover, causal discovery tools can quantify the causal influence of 

tropical drivers versus extra-tropical influences and internal dynamics of the ISM sub-seasonal circulation dynamics.  

Adding internal dynamics helps to further understand the mechanisms that underlie this mid-latitude-ISM relationship. Internal 470 

variability of the ISM system has the strongest effect on MT rainfall. The influence from the extratropics on MT rainfall, as 

mitigated by CGTI, is about half of the magnitude of that of internal dynamics, while the influence of MJO as the key tropical 

driver on MT rainfall is only slightly weaker (Fig. 7). However, when taking MT rainfall and vertical wind field over the 

Indian subcontinent together as two interdependent yet different facets of the ISM, we find that the general effect of tropical 

drivers on the system is slightly stronger than that of the extratropical drivers, while looking on the one hand on the effect of 475 

MJO on the circulation and on the other hand on the total effect of CGTI on MT rainfall via both, directed linkages and through 

a parallel influence on the vertical wind field over India. 

The reported findings are in good agreement with the existing literature. It is well known that internal variability dominates 

ISM inter-annual variability (Goswami and Xavier, 2005). Our causal approach enables to quantify the relative importance 

of local internal dynamics, separate it from the influence of remote actors, and remove spurious factors. The negative 480 

feedback in the ISM internal variability, here represented by the opposite relationship between MT rainfall and W1 (see Figs. 

6d and 7), further supports the hypothesis that the internal dynamics of the ISM itself provides a mechanism to switch from 

an active to a break phase. The physical mechanism can include both radiative effects (Krishnamurti and Bhalme, 1976) and 
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local changes in static stability due to the latent heat release that follows convective precipitation (Saha et al., 2012). While 

strong upward motions precede strong MT rainfall, enhanced rainfall over the ITCZ region is known to lead the initiation of 485 

breaks by 7-10 days (Krishnan et al., 2000). Moreover, suppressed convection over the Bay of Bengal initiated over the 

tropical Indian Ocean and associated westward propagating Rossby waves bring break conditions over the monsoon trough 

(Krishnan et al., 2000). 

Moreover, our results also support previous findings that suggest a link between the active MJO phases (3-6, corresponding 

to positive RMM1 values) and enhanced ascending motions over the MT region and adjacent Maritime Continent which in 490 

turn promote enhanced MT rainfall (Fig. 6d and 7) (Anandh et al., 2018; Mishra et al., 2017; Pai et al., 2011). 

Our theory-guided causal effect network approach, i.e. creating CENs starting from physical hypotheses, enables us to: (1) test 

those hypotheses in a causal framework, removing the influence from spurious correlations, and (2) quantify the relative 

strength (i.e. causal effect) of different local and remote actors. With this approach, one can gain insight in which role each 

part of a complex system such as the ISM circulation plays in relation to the other components. However, domain knowledge 495 

is essential to be guided by known physical processes and associated timescales. By combining RG-CPD and CEN, one can 

test initial hypotheses and perform further more explorative causal analyses to identify new features. For example, in this 

study, we first identify our initial actors based on the literature. Then, we increase the pool of actors by searching for causal 

precursors using RG-CPD. Finally, we reconstruct a CEN that combines those findings and helps to put them into a broader 

context. This approach can be applied to both observational data (as done here) and climate model data to validate the 500 

underlying processes behind sub-seasonal variability, which might pave the way for improved forecasts. 

The described identification and quantification of causal dependences is based on linear statistical models between the different 

considered variables quantified in terms of partial correlations. While such linear models can provide useful approximations 

of real-world climate processes, there could be cases in which they miss other existing linkages that are not described by linear 

functional relationships. In turn, extending the present analysis to a fully nonlinear treatment is straightforward but would 505 

come on the cost of much higher computational demands, which is why we have restricted ourselves in this work to the linear 

case. Nevertheless, accounting for possible nonlinearities may add further information on the inferred mechanisms and should 

therefore be undertaken in future research.  

Our results indicate that, on weekly timescales, the strength of the influence from the mid-latitudes on MT rainfall itself is as 

large as that from the tropics (MJO) but about a factor two smaller than the ISM internal dynamics. However, the tropical 510 

(MJO) effect on the associated vertical wind speed over the MT region is larger than that of extratropical drivers on MT 

rainfall. Related to the confirmed relevance of extratropical drivers for ISM variability at weekly scales, we emphasise that 

there exists a substantial body of literature suggesting that the influence from the mid-latitudes is particularly important for 

extremes (Lau and Kim, 2011; Vellore et al., 2014, 2016). Future work should therefore aim to further disentangle the specific 

mechanisms that particularly act in the context of extremes. 515 
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